Artemis Threat Modeling:

Tampering
Threat: Users sending messages to Artemis queues without having the permission
Mitigation: Prevent this by mapping roles to users to give certain permissions (using Artemis embedded security)
Damage Potential: 1
Reproducibility: 3
Exploitability: 3
Affected Users: 2
Discoverability: 2
Total: 1 + 3 + 3 + 2 + 2 = 11

Non-Repudiation
Threat: How do we know the person who sent/consumed a message really consumed that message? (Not being able to track users sending/consuming messages)
Mitigation: Audit all messages being sent/consumed
Damage Potential: 3
Reproducibility: 3
Exploitability: 3
Affected Users: 1
Discoverability: 1
Total: 3 + 3 + 3 + 1 + 1 = 11

Information Disclosure
Threat: Users consuming messages they are not authorized to consume
Mitigation: (Same as Tampering)
DREAD: (Same as Tampering)

Denial-Of-Service
[bookmark: _GoBack]Threat: If a poison message is sent to an Artemis queue, the message fails and attempts to be resent 10 times, thus slowing the system down especially if numerous poison messages are being sent
Mitigation: Input validation? Flow control by limiting memory for a set of queues? Using human interaction to notice that the DLQ is being hammered and taking action on the user sending poison messages? Needs more investigation.
Threat: A slow consumer can cause a DOS attack. The consumer can’t keep up with consuming messages on a queue therefore the Artemis queue backs up and eventually casing Artemis to die
Mitigation: Artemis knows who is a slow consumer and can kill their connection
Damage Potential: 3
Reproducibility: 3
Exploitability: 1
Affected Users: 3
Discoverability: 3
Total: 3 + 3 + 1 + 3 + 3 = 13

Can DDF get a DOS attack from Artemis?
Threat: A very large image gets published to Artemis, the message gets processed by some DDF service, but DDF doesn’t actually have the memory to process it, causing an OOM exception for DDF.
Mitigation: Reject the image if it’s too big? Think about how we can change the processing for DDF.











