Artemis Threat Modeling

Affects Processes:

External Client  Artemis

Spoofing
Threat: Users sending messages to Artemis queues without having the permission
Mitigation: Prevent this by mapping roles to users to give certain permissions (using Artemis embedded security)
Damage Potential: 1
Reproducibility: 3
Exploitability: 3
Affected Users: 2
Discoverability: 2
Total: 1 + 3 + 3 + 2 + 2 = 11

Non-Repudiation
Threat: How do we know the person who sent/consumed a message really consumed that message? (Not being able to track users sending/consuming messages)
Mitigation: Audit all messages being sent/consumed, signing messages
Damage Potential: 3
Reproducibility: 3
Exploitability: 3
Affected Users: 1
Discoverability: 1
Total: 3 + 3 + 3 + 1 + 1 = 11?

Information Disclosure
Threat: Users consuming messages they are not authorized to consume
Mitigation: (Same as Spoofing) also using SSL connections
DREAD: (Same as Spoofing) also using SSL connections

Denial-Of-Service
Threat: If a poison message is sent to an Artemis queue, the message fails and attempts to be resent 10 times, thus slowing the system down especially if numerous poison messages are being sent
Mitigation: Input validation? Flow control by limiting memory for a set of queues? Using human interaction to notice that the DLQ is being hammered and taking action on the user sending poison messages? Needs more investigation.
Threat: A slow consumer can cause a DOS attack. The consumer can’t keep up with consuming messages on a queue therefore the Artemis queue backs up and eventually casing Artemis to die
Mitigation: Artemis knows who is a slow consumer and can kill their connection. Expiration of messages? last value  queues? limiting the address size from the memory space?
Damage Potential: 3
Reproducibility: 3
Exploitability: 1
Affected Users: 3
Discoverability: 3
Total: 3 + 3 + 1 + 3 + 3 = 13

Tampering
Threat: Consuming a message from a queue, modify the message maliciously and put it back on the queue
Mitigation: Artemis roles, use input and output address, people can only write to specific queues and people can only read from specific address
Using virtual queues/topics that DSD could send/consume messages to

Elevation of Privilege: Not really a problem for Artemis as there is no concept of a system user




Artemis  DDF

Spoofing: 
Threat: Artemis sending messages to DDF without the permissions, how does DDF know that Artemis is who they say they are?
Mitigation: Using Artemis embedded security, sending and maintaining a subject across the broker to identify who is doing what when performing operations

Non-repudiation: 
Threat: How do we know that when Artemis sends a message to DDF, they are who they say they are
Mitigation: Auditing who is performing what operation, sending a subject across the broker, using an interceptor to grab the message to figure out who it came from

Information Disclosure: (Same as from an external client to Artemis)

Tampering: (Same as from an external client to Artemis)

Denial-Of-Service:
Can DDF get a DOS attack from Artemis?
Threat: A very large image gets published to Artemis, the message gets processed by some DDF service, but DDF doesn’t actually have the memory to process it, causing an OOM exception for DDF.
Mitigation: Input validation? Reject the image if it’s too big? Think about how we can change the processing for DDF.

Elevation of Privilege: Trust the people who push to certain queues/topics, using Artemis embedded security

DDF  Artemis
Trusted and the interaction are the same as from an external client to DDF


Outstanding Questions:

How do we check that we know who sent a message? And who wrote it the message out? 

How to we protect from incoming (write) DOS attacks?

How do we do authentication for the broker? 

How do we maintain identity across the broker,?
[bookmark: _GoBack]




